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Analogies between Z and Fp[u] for prime p

Z Fp[u]

units are ±1 units are F×p
prime irreducible

composite reducible
positive monic
|m| deg g

Div. Algorithm Div. Algorithm
Z/(m) Fp[u]/(g)

Theorem. For m 6=0, |Z/(m)|= |m|; for g 6=0, |Fp[u]/(g)|=pdeg g .

Ex. Why |Z/(9)| = 9 and |F3[u]/(u2 + 1)| = 9: in Z, a = 9q + r
where 0 ≤ r ≤ 8 so a ≡ r mod 9. In F3[u], g = (u2 + 1)q + r
where r = c1u + c0 (c0, c1 ∈ F3), so g ≡ r mod u2 + 1.

Theorem. For m ≥ 1, Z/(m) is a field if and only if m is prime.
For any g, Fp[u]/(g) is a field if and only if g is irreducible.

Theorem. For every prime p, F×p is cyclic. For every irreducible π,
(Fp[u]/(π))× is cyclic.



Analogies between Z and Fp[u] for prime p (continued)

For g 6= 0 in Fp[u] set N(g) = pdeg g = |Fp[u]/(g)|. That is,

N(cdud + · · ·+ c1u + c0) = pd

if cd 6= 0.

Example. In F3[u], N(2u4 + u2 + 2u + 2) = 34 = 81.

Quadratic reciprocity works in Fp[u] when p 6= 2: for distinct
monic irreducibles π1 and π2 in Fp[u],(

π1

π2

)(
π2

π1

)
= (−1)(N(π1)−1)/2·(N(π2)−1)/2.

(There is a version of this when p = 2; more complicated.)



Nonanalogies between Z and Fp[u]

1 Positive integers are closed under addition and multiplication.
Monic polynomials are closed under multiplication but not
addition.

2 Polynomials in Fp[u] can be composed: g(h(u)). Integers
can’t be composed.

3 Standard representatives of Fp[u]/(g) are closed under
addition; this is not true in Z/(m). (The integers are not
(Z/(10))[10]!)

4 For prime powers pk and k > 1, (Z/(pk))× is usually cyclic:
fails only if p = 2 and k ≥ 3. For irreducible powers πk with
k > 1, (Fp[u]/(πk))× is usually not cyclic: fails only if
deg π = 1 and k = 2, or if deg π = 1, p = 2, and k = 3.

5 We can’t prove n > 1 in Z is squarefree without factoring it,
but g ∈ Fp[u] is squarefree (no repeated irred. factor) if and
only if (g(u), g ′(u)) = 1: no need to factor g .



Counting in Z and Fp[u]

In Fp[u], count the size of the following sets and decide which
should be the analogue of {1 ≤ n ≤ x}.

1 {g : deg g = d}

2 {monic g : deg g = d}

3 {g : deg g ≤ d}

4 {monic g : deg g ≤ d}



Analogue of Prime Number Theorem in Fp[u]

Fix a prime number p. For n ≥ 1, set

Ip(n) = |{monic irreducibles in Fp[u] of degree n}|,

I≤p (n) = |{monic irreducibles in Fp[u] of degree up to n}|.

Then Ip(n) ∼ pn

n
and I≤p (n) ∼ pn

n

(
p

p − 1

)
as n→∞.

n 5 6 7 8 9 10

I3(n) 48 116 312 810 2184 5580
3n/n 48.6 121.5 312.42 820.12 2187.0 5904.9
Ratio .9876 .9547 .9986 .9876 .9986 .9449

I≤3 (n) 80 196 508 1318 3502 9382
3n+1/2n 72.9 182.2 468.6 1230.1 3280.5 8857.3

Ratio 1.0973 1.0754 1.0839 1.0713 1.0675 1.0592

If we count nonmonic polynomials then multiply counts by p − 1:
Iallp (n) ∼ (p − 1)pn/n and Iall,≤p (n) ∼ pn+1/n as n→∞.



Analogue of Bunyakovsky’s conjecture in Fp[u][T ]

Fix f (T ) in Fp[u][T ] with degT (f ) > 0. Examples include

T 2 + u, uT + u4 − 1, (u + 1)T 3 + T + u2.

Question: Do infinitely many g ∈ Fp[u] make f (g) irreducible?

Example. Consider f (T ) = T 2 + u in F3[u][T ].

g f (g) Irreducible?

0 u X
1 u + 1 X
2 u + 1 X
u u2 + u

u + 1 u2 + 1 X
u + 2 u2 + 2u + 1

2u u2 + u
2u + 1 u2 + 2u + 1
2u + 2 u2 + 1 X
u2 + 2 u4 + u2 + u + 1 X



Analogue of Bunyakovsky’s conjecture in Fp[u][T ]

Two constraints on f (T ) ∈ Fp[u][T ] with degT f > 0 in order for
f (g) to be irreducible in Fp[u] for infinitely many g ∈ Fp[u]:

1 f (T ) is irreducible in Fp[u][T ] (i.e., f 6= f1f2 for f1, f2 6∈ F×p ).

2 (Bunyakovsky condition) For each irreducible π in Fp[u] there
is g ∈ Fp[u] such that f (g) 6≡ 0 mod π.

Example. If f (T ) = T n + u and n ≥ 1 then the Bunyakovsky
condition is satisfied because f (0) = u and f (1) = 1 + u are
relatively prime. It is irreducible in Fp[u][T ].

Example. If f (T ) = T p − T + u then f (g) ≡ 0 mod u for all
g ∈ Fp[u], so f (T ) fails the Bunyakovsky condition at u. It is
irreducible in Fp[u][T ].

Conjecture. If f (T ) ∈ Fp[u][T ] is nonconstant in T and fits both
conditions above then there are infinitely many g in Fp[u] making
f (g) irreducible.



Example of analogue of Bunyakovsky’s conjecture in F3[u][T ]

Set f (T ) = T 2 + u in F3[u][T ]. As g runs over all polynomials of
degree n in F3[u], how often is f (g) = g2 + u irreducible?

n Irred. values

4 16
5 46
6 104
7 256
8 694
9 1820

10 5028
11 13634
12 37674
13 104438
14 291610
15 815210
16 2291794



Analogue of Bunyakovsky’s conjecture and Hypothesis H in Fp[u][T ]

Conjecture. If f (T ) ∈ Fp[u][T ] is nonconstant in T , irreducible in
Fp[u][T ], and fits the Bunyakovsky condition then f (g) is
irreducible for infinitely many g in Fp[u][T ].

The only proved case of this conjecture is when degT f = 1, which
says each a + mT with gcd(a,m) = 1 in Fp[u] has infinitely many
irreducible values on Fp[u]. This is an analogue of Dirichlet’s
theorem.

Conjecture. If f1, . . . , fr ∈ Fp[u][T ] are nonconstant in T , irred.
in Fp[u][T ], and their product fits the Bunyakovsky condition then
f1(g), . . . , fr (g) are irreducible for infinitely many g in Fp[u][T ].

Example. If p > 2 then f1(T ) = T and f2(T ) = T + c satisfy
Hypothesis H in Fp[u] for c ∈ F×p , so we expect infinitely many
irreducible pairs π, π + c as π runs over irreducibles in Fp[u]. In
fact this is a theorem of Chris Hall (2006) if p > 3 and Paul
Pollack if p = 3 (2008).



Analogue of Bateman–Horn conjecture in Fp[u][T ] for 1 polynomial

For nonconstant irreducible f (T ) ∈ Z[T ] satisfying the
Bunyakovsky condition, the Bateman–Horn conjecture predicts

πf (x) ∼ 1

deg f

∏
p

(
1− ωf (p)/p

1− 1/p

)
· x

log x
.

For irreducible f (T ) in Fp[u][T ] with degT (f ) > 0 set

πf (n) = |{g of degree n in Fp[u] : f (g) is irreducible}|.

As n→∞ the number of irreducibles in Fp[u] of degree n is
∼ (p − 1)pn/n, so it’s natural to conjecture that

πf (n) ∼ 1

degT f

∏
monic π

(
1− ωf (π)/N(π)

1− 1/N(π)

)
· (p − 1)pn

n
,

where ωf (π) = |{g mod π : f (g) ≡ 0 mod π}| and N(π) = pdeg π.
Example. For f (T ) = T 2 + u in F3[u][T ], the conjecture says

πf (n) ∼ 1

2

∏
π 6=u

(
1− (−u|π)

N(π)− 1

)
· (3− 1)3n

n
.



Example of analogue of Bateman–Horn conjecture in F3[u][T ]

If f = T 2 + u, Cf =
∏
π 6=u

(
1− (−u|π)

N(π)− 1

)
converges too slowly to

compute to high accuracy directly, like C =
∏
p>2

(
1− (−1|p)

p − 1

)
.

n 7 8 9 10 11

Prod. for .849564 .850852 .850850 .851195 .851195
deg(π) ≤ n

Yesterday, to speed up convergence of C we rewrote it as

C =
4

π

∏
p≡1 mod 4

(
1− 1

(p − 1)2

) ∏
p≡3 mod 4

(
1− 1

p2 − 1

)
and by similar reasoning we can rewrite Cf as

Cf =
∏

π(0)=1

(
1− 1

(N(π)− 1)2

) ∏
π(0)=2

(
1− 1

N(π)2 − 1

)
,

which converges more rapidly: Cf ≈ .8513304606.



Example of analogue of Bateman–Horn conjecture in F3[u][T ]

Count irreducible values of f (T ) = T 2 + u on F3[u]: as g runs
over polynomials of degree n in F3[u] we count how often g2 + u is
irreducible. Is this number, πf (n), asymptotic to ∼ Cf (3n/n)
where Cf ≈ .8513304606?

n πf (n) Cf (3n/n) Ratio

7 256 265.9 .9624
8 694 698.1 .9939
9 1820 1861.8 .9775

10 5028 5027.0 1.0001
11 13634 13710.0 .9944
12 37674 37702.6 .9992
13 104438 104407.3 1.0002
14 291610 290849.0 1.0026
15 815210 814377.4 1.0010
16 2291794 2290436.5 1.0005



Example of analogue of Bateman–Horn conjecture in F3[u][T ]

Count irreducible values of f (T ) = T 12 + (u + 1)T 6 + u4 on
F3[u]: how often is g12 + (u + 1)g6 + u4 irreducible as g runs over
polynomials of degree n in F3[u] as n→∞?

n πf (n) Estimate Ratio

9 1624 1168.3 1.390
10 4228 3154.5 1.340
11 11248 8603.2 1.307
12 31202 23658.7 1.319
13 87114 65516.5 1.330
14 244246 182510.2 1.338
15 683408 511028.6 1.337
16 1914254 1437268.0 1.332

The ratio isn’t tending to 1! What will happen in the long run?



Example of analogue of Bateman–Horn conjecture in F3[u][T ]

Count irreducible values of f (T ) = T 3 + u on F3[u]: how often is
g3 + u irreducible as g runs over polynomials of degree n in F3[u]
as n→∞?

n πf (n) Estimate Ratio

9 1404 1458.0 .963
10 7776 3936.6 1.975
11 10746 10736.2 1.001
12 0 29524.5 0
13 82140 81760.2 1.005
14 455256 227760.4 1.999
15 637440 637729.2 1.000
16 0 1793613.4 0

Odd degrees look okay, but even degrees are surprising.



Example of analogue of Bateman–Horn conjecture in F5[u][T ]

Count irreducible values of f (T ) = T 10 + u on F5[u]: how often is
g10 + u irreducible as g runs over polynomials of degree n in F5[u]
as n→∞?

n πf (n) Estimate Ratio

4 0 125.0 0
5 0 500.0 0
6 0 2083.3 0
7 0 8928.6 0
8 0 12686.5 0
9 0 173611.1 0

10 0 781250.0 0
11 0 3551136.4 0
12 0 16276041.7 0
13 0 75120192.3 0
14 0 348772321.4 0
15 0 1627604166.7 0
16 0 7629394531.3 0



What’s happening?

In F5[u] let’s see how g10 + u factors for some nonconstant g .

u10 + u = π1π̃1π2π6

(u + 1)10 + u = π1π9

(u + 2)10 + u = π1π̃1π3π5

(u + 3)10 + u = π3π7

(u + 4)10 + u = π2π8

(u2)10 + u = π1π̃1π9π̃9

(u2 + 1)10 + u = π1π2π̃2π15

(u2 + 2)10 + u = π1π3π6π10

(u2 + 3)10 + u = π1π19

(u2 + 4)10 + u = π3π17

(u2 + u + 2)10 + u = π2π4π7π̃7

(u3 + 2)10 + u = π1π̃1π4π6π7π11

What patterns do you see in the irreducible factorizations?



What’s happening?

Theorem. For nonconstant g in F5[u], g10 + u has an even
number of irreducible factors.

To prove this we use an analogue of a number-theoretic function
more obscure than ϕ(n) and σ(n): the Möbius function µ(n).

Definition. Set µ(1) = 1, and for n > 1 set

µ(n) =

{
(−1)r , if n = p1 · · · pr (squarefree),

0, otherwise.

Example. Compute µ(2), µ(4), µ(15), and µ(45).

There is no known way to compute µ(n) without factoring n.

Definition. Set µ(c) = 1 for c ∈ F×p . For nonconstant g ∈ Fp[u],

µ(g) =

{
(−1)r , if g = π1 · · ·πr (squarefree),

0, otherwise.

For irreducible π, µ(π) = −1. Thus µ(g) = 1⇒ g isn’t irreducible.



What’s happening?

Unlike in Z, in Fp[u] there is a formula for µ(g) other than its
definition! Using properties of discriminants and resultants, if
p 6= 2 and g is squarefree in Fp[u] with r (monic) irreducible
factors then (

disc g

p

)
= (−1)deg g−r ,

so

µ(g) = (−1)r = (−1)deg g

(
disc g

p

)
.

This last formula for µ(g) is also valid for g not squarefree since
disc g = 0. Using properties of discriminants and resultants on the
special problem set, µ(g) can be computed without factoring g .
This refines being able to prove g is squarefree (µ(g) 6= 0) without
factoring g by checking that (g , g ′) = 1.

Theorem. For nonconstant g in F5[u], µ(g10 + u) = 1 so g10 + u
is not irreducible.



A Möbius bias on polynomial sequences in Fp[u]

All known f (T ) violating the expected analogue of the
Bateman–Horn conjecture in Fp[u][T ] have three properties.

1 They are polynomials in T p, e.g., T 10 + u = (T 5)2 + u.
2 The bad ratio statistics seem to have 1, 2, or 4 limiting values.
3 A Möbius bias: averages of µ(f (g)) stay away from 0.

Example. If f (T ) = T 12 + (u + 1)T 6 + u4 in F3[u][T ] then

n ≥ 2 =⇒
∑

deg g=n µ(g12 + (u + 1)g6 + u4)∑
deg g=n |µ(g12 + (u + 1)g6 + u4)|

= −1

3
.

Example. If f (T ) = T 3 + u in F3[u][T ] then

n ≥ 1 =⇒
∑

deg g=n µ(g3 + u)∑
deg g=n |µ(g3 + u)|

= 0,−1, 0, 1, 0,−1, 0, 1, . . . .

Example. If f (T ) = T 10 + u in F5[u][T ] then

n ≥ 1 =⇒
∑

deg g=n µ(g10 + u)∑
deg g=n |µ(g10 + u)|

= 1.



No classical Möbius bias

The Prime Number Theorem is equivalent to

1

x

∑
n≤x

µ(n)→ 0 as x →∞.

It is believed that for irreducible f (T ) ∈ Z[T ] satisfying the
Bunyakovsky condition that

1

x

∑
n≤x

µ(f (n))→ 0 as x →∞,

but it is only proved for linear f (T ) (PNT and Dirichlet’s theorem).

Can you tell which of the following sequences of twenty successive
nonzero Möbius values is taken from somewhere in the sequence
µ(n) or the sequence µ(n2 + 1)?

1, 1,−1,−1,−1,−1,−1, 1, 1, 1, 1, 1,−1, 1, 1,−1,−1, 1, 1,−1

−1, 1, 1, 1,−1, 1, 1, 1, 1,−1,−1,−1,−1,−1, 1,−1,−1,−1, 1,−1



A Möbius bias on polynomial sequences in Fp[u]

Theorem. (KC, BC, R. Gross) Let p 6= 2 and f (T ) ∈ Fp[u][T ] be
nonconstant in T , irreducible, and fit the Bunyakovsky condition.
If f (T ) ∈ Fp[u][T p] then the sequence

Λp(f ; n) := 1−
∑

deg g=n µ(f (g))∑
deg g=n |µ(f (g))|

for sufficiently large n is periodic in n with period 1, 2, or 4.

The sequence Λp(f ; n) is much simpler than its definition suggests.

p f (T ) Bad ratio Λp(f ; n)

3 T 12 + (u + 1)T 6 + u4 1.33 4/3
3 T 3 + u 1.00, 1.99, 1.00, 0 1, 2, 1, 0
5 T 10 + u 0 0

Note. The correct definition of Λp(f ; n) should have an additional
(technical) condition in the averaging over g . In some, but not all,
examples ignoring the condition doesn’t affect Λp(f ; n) for large n.



Correction to analogue of Bateman–Horn conjecture in Fp[u][T ]

Conjecture. (KC, BC, R. Gross) Let p 6= 2 and f (T ) ∈ Fp[u][T ]
be nonconstant in T , irreducible, and satisfy the Bunyakovsky
condition. If f (T ) is not a polynomial in T p then as n→∞

πf (n) ∼ 1

degT f

∏
monic π

(
1− ωf (π)/N(π)

1− 1/N(π)

)
· (p − 1)pn

n
.

If f (T ) is a polynomial in T p then as n→∞

πf (n) ∼ Λp(f ; n)
1

degT f

∏
monic π

(
1− ωf (π)/N(π)

1− 1/N(π)

)
· (p − 1)pn

n
.

Summary. In Z[T ] all obstructions to an irreducible polynomial
having infinitely many prime values are expected to be “local”
(there is a problem mod p for some prime p). In Fp[u][T ] there is
an extra obstruction to taking irreducible values infinitely often
that is that is “global” (unrelated to modular arithmetic) and is
due to a bias in Möbius averages having no classical analogue.



What about p = 2?

In F2[u][T 2] there are polynomials that deviate numerically
from the analogue of the Bateman–Horn conjecture.

For g ∈ F2[u] there is a formula for µ(g) other than its
definition, but it’s more complicated than in Fp[u] for p 6= 2.

For f (T ) ∈ F2[u][T 4] the Möbius bias factor Λ2(f ; n) fits the
data and provably has period 1, 2, or 4, but polynomials in T 2

that are not polynomials in T 4 are still mysterious.

n πT 6+u(n) Estimate Ratio Λ2(T 6 + u; n)

11 0 43.0 0 0
12 0 78.8 0 0
13 306 145.5 2.1018 2
14 512 270.3 1.8937 2
15 0 504.6 0 0
16 0 946.2 0 0
17 3575 1781.2 2.0070 2
18 6726 3364.5 1.9990 2


